31 research outputs found

    The Mobile Spatial coordinate Measuring System II (MScMS-II):system description and preliminary assessmentof the measurement uncertainty

    Get PDF
    According to the increasing interest in metrological systems for the dimensional measurements of large-size objects in a wide range of industrial sectors, several solutions based on different technologies, working principles, architectures, and functionalities have recently been developed. Among all, the most flexible and easily transportable solutions are those that have aroused most interest and have found greater success. In order to address the needs of Large-Scale Metrology (LSM) applications, a distributed flexible system based on a network of low-cost InfraRed (IR) sensors – the Mobile Spatial coordinate Measuring System II (MScMS-II) – has been developed at the Industrial Quality and Metrology Laboratory of Politecnico di Torino. This paper presents a preliminary uncertainty assessment of the system referring to the measured point coordinates in the 3D space, focusing on the sources of measurement uncertainty and the related propagation laws. A preliminary metrological characterization of MScMS-II architecture, experimentally evaluated through a system prototype, is also presented and discussed

    A wireless sensor network-based approach to large-scale dimensional metrology

    No full text
    In many branches of industry, dimensional measurements have become an important part of the production cycle, in order to check product compliance with specifications. This task is not trivial especially when dealing with largescale dimensional measurements: the bigger the measurement dimensions are, the harder is to achieve high accuracies. Nowadays, the problem can be handled using many metrological systems, based on different technologies (e.g. optical, mechanical, electromagnetic). Each of these systems is more or less adequate, depending upon measuring conditions, user's experience and skill, or other factors such as time, cost, accuracy and portability. This article focuses on a new possible approach to large-scale dimensional metrology based on wireless sensor networks. Advantages and drawbacks of such approach are analysed and deeply discussed. Then, the article briefly presents a recent prototype system - the Mobile Spatial Coordinate-Measuring System (MScMS-II) - which has been developed at the Industrial Metrology and Quality Laboratory of DISPEA - Politecnico di Torino. The system seems to be suitable for performing dimensional measurements of large-size objects (sizes on the order of several meters). Owing to its distributed nature, the system - based on a wireless network of optical devices - is portable, fully scalable with respect to dimensions and shapes and easily adaptable to different working environments. Preliminary results of experimental tests, aimed at evaluating system performance as well as research perspectives for further improvements, are discusse

    Robust and Randomized Control Design of Mini-UAVs: The MH1000 Platform

    No full text
    Abstract — Mini-UAVs (Unmanned Aerial Vehicles) have been the subject of a large number of successful designs aimed to research, commercial and military purposes. A mini-UAV platform can be considered as a miniaturized aircraft so that classical design methodologies can be extended to this aeria
    corecore